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SUMMARY

A new numerical algorithm for attached cavitation �ows is developed. A cavitation model is imple-
mented in a viscous Navier–Stokes solver. The liquid–vapour interface is assumed as a free surface
boundary of the computation domain. Its shape is determined with an iterative procedure to match the
cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient along
the wall, is taken into account in updating the cavity shape iteratively. A series of computations are
performed for the cavitating �ows across three kinds of headform=cylinder bodies: conic, ogival and
hemispheric heads. A range of cavitation numbers is investigated for each headform=cylinder body. The
obtained results are reasonable and the iterative procedure of cavity shape updating is quite stable.
The superiority of the developed cavitation model and algorithm is demonstrated. Copyright ? 2006
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Cavitation is a widely existing hydrodynamic phenomenon that has received much attention
over the past decades. However, it remains a persistent challenge to both researchers and
designers because of its extreme complexity and daunting di�culties in experimental studies
as well as numerical simulation. Cavitation physics plays an important role in the design
and operation of many liquid handling turbomachines and devices. When updating existing
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hydraulic installations or designing new geometries, the cavitation guarantees are often the
main limiting features. A precise prediction of this phenomenon and evaluation of its deteri-
orative e�ect on the performance of machine by numerical simulation is therefore obviously
essential. Accordingly, substantial e�orts in this aspect [1–8] have been undertaken recently
towards understanding the physics of, designing away from, and accommodating the e�ects
of cavitation.
Among the several types of cavitation, attached cavitation (or sheet cavitation) is widely

encountered in hydraulic engineering and in a variety of di�erent situations, such as underwater
vehicles, high-speed pumps and high-pressure injectors. These �ows are characterized with a
vapour forebody attached to the surface of an object. At the rear part of an attached cavitation,
there is an unsteady, two-phase and turbulent wake region where the cavitation bubble begins
to collapse under the in�uence of increasing external pressure. A bulk of researches has been
carried out to date to deal with cavitating �ows of this nature [7–15].
Recently, with the advent of inexpensive powerful computers and urgent request for

understanding the physics of cavitation, more general computational �uid dynamics (CFD)
approaches have been developed and they are seeing more and more use in predicting �ow
�elds of this nature in di�erent liquid handling machines and situations. Deshpande et al. [14]
developed an Euler analysis method and then extended it by solving the Reynolds-averaged
Navier–Stokes (RANS) equations to predict the geometrical characteristics of cavitation bub-
ble. Chen and Heister [15] developed some e�ective numerical techniques for attached cavi-
tation. In addition, in the past decade, a bulk of works [4, 8, 12, 13] has been performed for
cavitating �ows by RANS methodologies. The most attractive features of RANS methodolo-
gies are that many realistic physics of cavitation can be readily incorporated and modelled,
and, they are feasible for application in very complicated con�gurations. The wall detachment
point and bubble length are naturally determined from the computation, unlike the potential
model in which they are usually given as a priori knowledge.
The adaptations of RANS methodologies for modelling attached cavitating �ows can be

grouped into two distinctly di�erent approaches. One approach, which is often referred to as
interface capturing method, treats the �ow as a compressible continuum �uid with variable
properties and a pseudo-density that widely varies between liquid and vapour extremes. The
entire �ow �eld is discretized and described by a set of compressible Navier–Stokes equations.
The most attractive features of this approach are that no ad hoc wake closure model is
required and it can treat travelling cavitations as well as attached cavitations. In addition,
the computation is performed on a set of �xed mesh. Much progress of this approach has
been achieved recently [4, 6]. Some adaptations of the interface capturing approach have been
incorporated in some commercial CFD software packages [16].
Another distinct class of numerical method, hereafter referred to as interface tracking

approach, seeks a solution in the liquid domain along with a description of the boundary
of the cavitating area. The liquid=vapour bubble interface is treated as part of the boundary
of the computation domain. It is determined with an assumption that the cavitating region
is at a constant pressure equal to the local vapour pressure. The �ow �eld is solved with
a single-phase �ow solver. Because of the nonlinear relationship between the vapour cavity
shape and the external �ow �eld of liquid, the solution of interface shape is obtained with
an iteration procedure. The interface is updated iteratively until a unique convergent shape
is achieved with constant pressure along it. Numerically, however, the interface tracking ap-
proach has to employ a wake closure model to approximate the two-phase behaviour in the
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SIMULATION OF ATTACHED CAVITATION FLOWS 641

wake region at the rear of the cavitation region, since it is impossible to impose a constant
pressure condition on the entire cavity surface while the recovery of pressure occurs at the
aft end of the cavitation. Despite that it is di�cult to introduce physics into the wake closure
model and there is no general way to de�ne it, most authors [17, 18] agree that the choice
of the wake closure model has little in�uence on the forebody of cavity and their researches
have proved this assertion.
The most salient feature of the interface tracking approach is that it has bypassed all those

numerical di�culties of the interface capturing approach and physical modelling di�culties of
the two-phase �ow models. Meanwhile it retains the capability to capture most features of the
viscous attached cavitating �ows. Numerous excellent works [14, 17, 18] have been carried out
to re�ne this cavitation model towards studying the physics of cavitation. Besides the com-
putational e�ciency of the interface tracking approach, it can predict the overall behaviour
of cavitating �ows fairly well [17]. In particular, since only the incompressible single-phase
�ow solver, which is relatively simple and well developed, is applied, the numerical treat-
ments of interface tracking schemes and computation algorithms are much more mature than
that of the two-phase �ow models and interface capturing techniques. In addition, since the
implementation of interface tracking schemes is independent of the �ow solver, it is easy to
be incorporated with any existing �ow solvers or commercial software packages.
In this paper, we implemented the interface tracking approach with a turbulent incompress-

ible RANS �ow solver. A new cavity shape updating formulation was developed. The cavita-
tion model and some improved numerical treatments were presented after a brief
description of the �ow solver. Then, a series of computation results was shown for the cav-
itating �ows past a variety of axisymmetric headform=cylinder bodies. The accuracy of the
algorithm and cavitation model was well validated with comparisons between the computation
results and available experimental data.

2. RANS FLOW SOLVER

The mass conservation equation and momentum equations can be written as follows in
Cartesian coordinates for steady, incompressible viscous �ows:

@(�ui)
@xi

=0 (1)

@(�ujui)
@xj

= − @p
@xi

+
@�ij
@xj

(2)

where �ij=�e� ((@ui=@xj) + (@uj=@xi))− 2
3�ij�e� (@ul=@xl), �e� =�+ �t , � and �t are molecular

and turbulent viscosity, respectively.
As a cavitating �ow is concerned, the most turbulence-dominated area is in the wake region

of a cavitation. Actually, the vapour bubble suddenly collapses in this region and strongly
interacts with the solid wall. The �ow is two-phase, turbulence-dominated and strongly time-
dependent. The mechanisms of this kind of two-phase �ows are extremely complex in this
region and no available turbulence model is capable of treating this kind of turbulent �ow
properly [18]. In our model, this area is modelled with a wake closure model since the
condition of constant pressure equal to the vapour pressure is impossible to meet along the
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entire cavity surface from the view point of simulation. In addition, the Reynolds number of
�ows of the calculation examples in this work is very small. The turbulence e�ect is negligible.
So we just used an algebraic turbulence model to approximate the e�ect of turbulence on the
�ow. The Baldwin–Lomax turbulence model [19] is employed to approximately evaluate the
turbulence viscosity due to its simplicity and computational e�ciency. The well-known wall-
function method is used to model the �ow close to solid walls. The algebraic Baldwin–Lomax
turbulence model coded in the program is given by

�t = 0:16�y2[1− exp(−y+=A+)]2|�|; 06y6y′ (3a)

�t = 0:02688�Fw

[
1 + 5:5

(
0:3y
ymax

)6]−1
; y¿y′ (3b)

where y denotes the normal distance away from the wall. Formulation (3a) denotes the inner
layer of the wall region and formulation (3b) denotes the outer layer. The parameter y′

represents the smallest value of y at which the values of �t in the inner and outer layer are
equal to each other. The parameter y+ is de�ned as

y+ =
√
�w�w
�w

y; A+ =26

where �w and �w are the shear stress and molecular viscosity at the wall. Parameter � is the
strength of �ow vortex, and

Fw =
{
0:25ymax(Umax −Umin)2

Fmax

}
or Fw =ymaxFmax

The smaller one of the two values of Fw is taken. Here, Fmax is the maximum value of the
function

F(y)=y|�|[1− exp(−y+=A+)]

and ymax is the value of y at that point.
Using the technique of non-staggered grid, a pressure-based algorithm based on the so-called

SIMPLEC method for general curvilinear coordinates is adopted to couple the momentum
equations and the continuity equation in the �ow computations [20]. The covariant velocity
projections rather than the Cartesian velocity components are selected as the dependent vari-
ables, resulting in the cross-pressure gradient terms in the momentum equations disappear.
The pressure correction, rather than the pressure itself, is derived and solved in this method.
A momentum interpolation scheme, which was newly developed to suppress the nonphysi-
cal pressure oscillation, is used for getting the �ow �ux through the surfaces of the control
volume. The discretization of the governing equations is performed using the �nite volume
approach. The convective and the orthogonal di�usion terms in the momentum equations
are treated by using the two-order upwind di�erencing scheme. The non-orthogonal di�usion
terms are evaluated by using the central di�erencing scheme and lumped into the source term
of the discretization equations. The resulting discretization equations are solved iteratively by
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the successive line over-relaxation (SLOR) method, with ADI and block additive correction
technique to speed up the convergence speed.
Neumann boundary condition is imposed for pressure correction on all boundaries. The

inlet pressure level is prescribed. A uniform velocity �eld is de�ned at the inlet boundary
and Neumann condition is speci�ed at the outlet boundary. The non-slip condition is applied
on all wall surfaces. The cavity surface is treated as a free streamline. So the free surface
boundary condition and impermeability condition are applied on the cavity surface. That is
@Vt=@n=0 and Vn = 0, where n is the normal direction and t is the tangential direction to the
local surface of cavity.

3. CAVITATION MODEL AND ALGORITHMS

The attached cavitation is modelled as a large cavity bubble on the wall with an interface to
the bulk �ow. Basically, there are three assumptions in this cavitation model,

(1) The cavity surface (or the interface) is a free surface.
(2) The pressure inside the cavity equals the local vapour pressure of �uid. In other word,

if the cavity surface is treated as a boundary of the computation domain, the pressure
on this part of boundary is equal to the vapour pressure.

(3) The rear part of the cavitation bubble is approximated with a wake model, where the
pressure is no longer equal to the vapour pressure.

Presented in Figure 1 is a schematic description of a cavitation bubble on a headform=cylinder
body, where A is the inception point, B the point linking the forebody and afterbody (wake
region) of the cavity and C the end point of cavitation. Obviously, there are three highlights
needed to pay attention to construct the cavity pro�le: the location of inception point A, the
pro�le of the forebody AB and the pro�le of the afterbody BC.
In our computations, the inception point is located by searching for the point on the currently

non-cavitation wall, where the pressure is minimal and drops below the local vapour pressure.
During the iteration of the cavity shape updating, the located inception point tends to move
upstream on a smooth wall with the establishing of the cavity shape. If the cavitation occurs
downstream to a sharp corner of a wall, the inception point often occurs at the sharp corner
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Figure 1. A schematic of the cavitation model.
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and always remains at the corner point. The computations showed this locating method for
the inception point is e�cient and e�ective.
Regarding the two-phase turbulent wake region, since we are still not aware of the �ow

structure and mechanisms in it, it is modelled by an afterbody de�ned by a cubic polynomial
function for the sake of simplicity [14, 17, 18]. The afterbody begins at the point on the cavity
surface where the local height is, for example, half of the maximal height of the cavity. It
smoothly links the forebody of the cavity and the local wall surface. The �rst and the second
derivatives of the cavity pro�le at the linking point B are enforced to be continuous. The
length of the closure domain, as well as the attached point of the cavity, is automatically
determined by the wake closure model. However, at the early stage of iteration, since the
cavity shape is far from well established, the length of the closure domain calculated from
the wake closure model may be too long or too short. This will result in both the inner
loop iteration of the �ow �eld calculation and the outer loop iteration of the cavity shape
updating time-consuming and instable. In order to avoid this numerical problem, the length
of the wake region is speci�ed associating with the maximal height of the cavity and only
the �rst derivation of the cavity pro�le at the linking point B is enforced to be continuous.
The computations showed that this technique can speed up the iterations of both the inner
loop and outer loop.
Because of the strong interaction between the cavity shape and the bulk �ow around it,

the forebody of the cavity is established iteratively by using a cavity shape updating scheme.
The solution of the cavity shape and �ow �eld is achieved until the pressure on the cavity
surface converges to a constant value equal to the vapour pressure of �uid. The free surface
boundary condition is applied on the cavity surface.
Numerically, this algorithm is to enforce the pressure on the forebody of the cavity surface

approach to a constant value equal to the local vapour pressure by establishing a proper
cavity shape iteratively. In other words, the following conditions must be satis�ed when the
convergent solution of the cavity shape is obtained.

(1) The pressure on the forebody of the cavity surface is uniformly distributed, approaching
to a constant value.

(2) This value is equal to the local vapour pressure of �uid.

Obviously, the �rst condition speci�es the uniformity of the pressure on the cavity surface
and the second condition speci�es the level of the pressure. Thus, it is natural to consider
using the feedback information of both pressure and pressure gradient distribution on the
cavity surface from the �ow computation when updating the cavity shape.
In order to verify the in�uence of cavity length and height on the pressure distribution,

we carried out the �ow �eld in a �ow channel with a bump on its bottom wall as shown in
Figure 2. The bump on the wall of the �ow channel corresponds to the cavity in a cavitating
�ow. We changed the height and length of the bump to compare their in�uence on the
pressure distribution on the bottom wall. The results are shown in Figure 2 from which we
can know that both the height and length of the bump have obvious in�uence on the pressure
distribution on the wall. In our model, the height and length of the cavity are obtained with a
coupled iterative procedure. Only the height of cavity has been established, then the length of
cavity can be determined because of the in�uence of cavity shape on the pressure distribution
on the body.
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Figure 2. In�uence of a bump shape on the pressure distribution on the wall of a channel.

In order to derive the formulation in a more general way, we write the relationship between
the cavity shape and the pressure distribution along it as follows, without loss of generality
for a given �ow condition and geometrical con�guration:

f
(
r;
@r
@s
;
@2r
@s2
;
@3r
@s3
; : : : ; p;

@p
@s
;
@2p
@s2

;
@3p
@s3

; : : :
)
=0 (4)

where r(s) and p(s) are the local thickness of cavity and the local pressure around it, s is
the distance coordination along the wall in the bulk �ow direction.
Considering n the superscript corresponding to the calculated value of the present iteration

of cavity shape updating, we have,

f
(
r(n);

@r(n)

@s
;
@2r(n)

@s2
;
@3r(n)

@s3
; : : : ; p(n);

@p(n)

@s
;
@2p(n)

@s2
;
@3p(n)

@s3
; : : :

)
=0 (5)

Since the pressure distribution p(n)(s) does not meet the pressure boundary condition along
the cavity surface and deviates from the local vapour pressure pV, we need to modify the
cavity shape as

r(n+1) = r(n) + �r(n) (6)
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so that

p(n+1) =pV (7)

Meanwhile, when �r is a value small enough, we can operate the function expressed in
(4) like a linear function without loss of generality. Substituting the relationships (6) and (7)
into (4), and then subtract (5) from it, we obtain

f
(
�r(n);

@�r(n)

@s
;
@2�r(n)

@s2
;
@3�r(n)

@s3
; : : : ; pV − p(n);−@p

(n)

@s
;−@

2p(n)

@s2
;−@

3p(n)

@s3
; : : :

)
=0 (8)

Drop the high order terms of small value in the above expression and rewrite it as

�0�r(n) + �1
@�r(n)

@s
+ �2

@2�r(n)

@s2
+ �3

@3�r(n)

@s3
+ · · ·

=�0(pV − p(n)) + �1 @p
(n)

@s
+ �2

@2p(n)

@s2
+ �3

@3p(n)

@s3
+ · · · (9)

where �0; �1; �2; : : : ; �0; �1; �2; : : : are coe�cients of each term in the expression. These coe�-
cients are functions of the cavity shape and pressure distribution at each iteration step. They
can be calculated out at each iteration step from the current solution of the �ow �eld and the
cavity shape by solving the following equation at each grid point on the cavity surface:

�0r(n) + �1
@r(n)

@s
+ �2

@2r(n)

@s2
+ �3

@3r(n)

@s3
+ · · ·

=�0p(n) − �1 @p
(n)

@s
− �2 @

2p(n)

@s2
− �3 @

3p(n)

@s3
− · · · (10)

Theoretically, after obtaining these coe�cients by solving Equation (10) at each grid point
on the cavity surface with the current cavity shape and pressure distribution, we can get the
newly updated cavity shape from Equation (9). Formulations (9) and (10) therefore constitute
the newly proposed cavity shape updating scheme, from which the adjustment value of the
cavity shape can be calculated with the current calculated �ow �eld.
As mentioned above, the adjustment value of �r must be small enough in order to ensure

the above scheme valid. Therefore, it is necessary to use the following formula to modify the
cavity shape iteratively,

r(n+1) = r(n) + ���r(n) (11)

where �� is a relaxation factor less than one.
Obviously, it is tedious to solve Equations (9) and (10) if too many terms are included.

Furthermore, the mesh resolution has to be very �ne if high-order derivatives are included in
the equations, resulting in the computation load increase dramatically. So it is necessary to
approximate the scheme in a simple but e�ective way.
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Approximate formula (9) and (10) by dropping all those terms of high-order derivative and
rewrite them as

�0�r(n) + �1
@�r(n)

@s
∼= �0(pV − p(n)) + �1 @p

(n)

@s
(12)

�0r(n) + �1
@r(n)

@s
∼= �0p(n) − �1 @p

(n)

@s
(13)

The coe�cients are calculated from the current �ow computation and the cavity shape by
Equation (13). In a simpler way, they can also be simply speci�ed as empirical constants for
a given �ow condition and con�guration. If one gives �0 = 1; �1 = 0 and �1 = 0, Equation
(12) becomes

�r(n) =�0(pV − p(n)) (14)

Formula (14) corresponds to the formula proposed by Hirschi et al. [17]. If one gives
�0 = 0; �1 = 1 and �1 = 0, Equation (12) becomes

��(n) ∼= @�r(n)

@s
=�0(pV − p(n)) (15)

Formula (15) corresponds to the formula proposed by Chen and Heister [18]. That is to say,
the existing schemes are some special simpli�ed forms of formula (12) and they did not take
into account the pressure gradient.
For simplicity and ease to be coded, let �0 = 0 and �1 = 1 so that Equation (12) becomes

�� ∼= @�r(n)

@s
=�0(pV − p(n)) + �1 @p

(n)

@s
(16)

Integrating Equation (16) along the cavity surface from the inception point gives,

�r(n) =
∫ s

sb

[
�0(pV − p(n)) + �1 @p

(n)

@s

]
ds (17)

where sb is the location of the inception point. As can be seen, the pressure di�erence, as
well as the pressure gradient along the cavity surface, is taken into account to determine the
adjustment value of cavity shape. The scheme of formula (17) is thus superior to the existing
schemes in which only the pressure di�erence is considered.
By analysing the two terms on the right hand of Equation (16), it is easy to determine the

signs of coe�cients �0 and �1. The �rst term is the pressure di�erence between the inside
and outside of the cavitation bubble. When pV¿p(n) and neglecting the surface tension, the
bubble tends to grow, and vice versa. Thus, the sign of �0 is positive. The second term is the
pressure gradient along the cavity surface. According to the relationship between the pressure
gradient and the gradient of cavity thickness distribution, the sign of �1 is also positive.
In order to stabilize the numerical iteration and make the formula to be more general for

di�erent �ow conditions and geometrical con�gurations, formula (17) is further modi�ed as

�r(n) =
�
180

∫ s

sb

⎛
⎝�′

0 sign(pV − p(n))
√

|p(n) − pV|
‖p(0) − pV‖ + �

′
1 sign

(
@p(n)

@s

)√
|@p(n)=@s|
‖@p(0)=@s‖

⎞
⎠ ds (18)

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:639–658



648 L. LIU, J. LI AND Z. FENG

where ‖p(0)−pV‖=
√∫ se

sb
(p(0) − pV)2 ds=(se − sb) and ‖@p(0)=@s‖ is de�ned in the same way,

and se is the end point of cavitation. All computations of this work were carried out using the
formula expressed in (18). The iteration of cavity shape adapting is stable. The factors �′

0; �
′
1

are speci�ed in a range from 0.1 to 1.0, depending on the �ow conditions and con�gurations.

4. NUMERICAL ALGORITHM FOR ATTACHED CAVITATION

The treatments of cavity prediction are done independent from the �ow computation in the
presented method. A subroutine is coded to transfer information between the �ow solver
and the block of cavity shape updating and grid adjustment. Because of the strong nonlinear
interaction between the cavity shape and the bulk �ow around it, an iterative process is
applied between the �ow computation and the cavity shape updating. Basing on the pressure
distribution along the cavity surface obtained from the �ow computation, a cavity shape
updating scheme is used to modify the cavity shape in order to match the pressure on the
cavity surface to a constant value equal to the local vapour pressure of �uid. After each cavity
shape modi�cation, the mesh of the �ow domain is modi�ed to �t the new cavity pro�le.
A new �ow computation is then performed using the previous solution interpolated on the
new mesh as the initial �ow �eld. The inception point of cavitation and the cavity length are
automatically determined in this iterative procedure.
The solution procedure can be outlined in four steps as follows:

(1) A cavitation free �ow computation is performed. According to the information given by
the �ow computation, the cavitation area as well as its inception point is located. The
point on the wall where the pressure is locally minimal and drops below the vapour
pressure is treated as the inception point. All the points downstream of the inception
point are activated to be in the cavitation area if the pressure is below the vapour
pressure. The thickness of the cavity is initially assumed to be zero in the cavitation
area. The initial mesh is saved as the background mesh for the later interpolation
operations.

(2) Flow computation is repeated, enforcing the free surface boundary condition on the
cavity surface.

(3) Check if the pressure distribution on the cavity surface has converged to the vapour
pressure in a prescribed permission error. If it has converged, that means the proper
cavity shape has been established. Then we terminate the computation and output the
�nal results. Otherwise, according to the feedback information from the �ow compu-
tation, the cavity shape is modi�ed using the proposed cavity shape updating scheme.
Meanwhile, the location of the inception point is again checked and relocated if nec-
essary. The wake model is used to rede�ne the afterbody according to the new cavity
shape. The current solution of the �ow �eld is stored on the background mesh. For the
case of multiple cavitation regions, it is necessary to check if new cavitation region has
appeared on the wall surface. In other words, check if there is any other point on the
wall that is not in the existing cavitation regions and has a locally minimal pressure
lower than the vapour pressure.

(4) The mesh is re-constructed to adapt to the new cavity surface. The previous solution
of the �ow �eld stored on the background mesh is then interpolated on the new mesh
as the initial �eld for the �ow computation of the next cycle.
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The process from steps (2) to (4) is repeated until the pressure distribution on the cavity
surface approaches to a constant value equal to the vapour pressure in a prescribed permission
error. The iteration process is terminated when the solution of the �ow �eld has converged
and the following condition gets satis�ed:

Dp=Dp0 =
‖p(n)(s)− pV‖
‖p(0)(s)− pV|6� (19)

where p(s) is the pressure on the forebody of the cavity, pV is the vapour pressure, � presents
the prescribed permission error. ‖p(s)−pV‖ is the second modulus of pressure di�erence over
the forebody of the cavity surface. � is a value between 5× 10−3 and 3× 10−2.
In this work, an algebraic method is chosen for mesh generation due to its

computational e�ciency. Exponential stretching is used in high-gradient regions. A typical
mesh is shown for an axisymmetric hemispheric headform=cylinder body in Figure 3, in
which the grid is clustered near the centreline=wall surface and in the vicinity of the hemi-
spheric headform. The initial mesh (shown in Figure 3) generated for the cavitation free
�ow computation is save as the background mesh. All the operations of mesh adaptation
and data transferring between the previous and the next initial solution of the �ow com-
putation are performed referring to the background mesh in the iteration procedure. After
each time the cavity shape has updated, the new pro�le of the cavity shape is recorded on
the background mesh frame and the mesh is adapted to the new �ow domain referring to
the background mesh. Figure 4 gives a typical local mesh distribution re-grided to adapt
to the cavity shape establishment on the wall of a hemispherical headform=cylinder body.
The grid is clustered close to the body wall and headform where gradient is usually large.
Good grid quality is ensured close to the head form with respect to the grid uniformity and
skewness.

Figure 3. Mesh for cavitation free �ow computation.
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Figure 4. Local mesh distribution with cavitation.

5. VALIDATION OF THE DEVELOPED NUMERICAL METHOD

5.1. Grid numbers test

Before each computation, it is a routine to perform a mesh dependency test in order to
pursue a solution independent of the mesh size employed. The computational grid is shown
in Figure 5 with a grid resolution of 46× 131. Figure 6 shows the mesh dependency test
of the cavitation prediction for a hemispheric headform=cylinder body. Given in Figure 6
are the pressure coe�cient Cp and cavity thickness distribution obtained with three sets of
mesh: 32× 91, 46× 131 and 62× 181. The cavitation index is K =0:20. Here we de�ned
K =(p∞ −pV)=(p0−p∞) and Cp=(p−p∞)=(p0−p∞), where p∞ is the far-�eld pressure,
p0 is the total pressure and pV is the vapour pressure. The experimental data of Rouse and
McNown [9] are also presented in the �gure. It is obvious that the results obtained with a
mesh size of 46× 131 agree very well with those obtained with a mesh size of 62× 181.
However, the results obtained with a mesh size of 32× 91 obviously deviate away from those
of the former two ones. This means that the solution is independent of the mesh size if the
mesh size is larger than 46× 131 for this situation.

5.2. Relaxation factors test

One of the salient originality of this work is the developed cavity shape updating
scheme, in which not only the pressure di�erence but also the pressure gradient obtained from
the previous solution of �ow �eld are considered in modifying the cavity shape. Hereinafter,
we test the e�ciency of this new scheme using di�erent relaxation factors. The in�uence of
the relaxation factor in the formula on the performance of this scheme is also checked. The
test computations are performed for a hemispheric headform=cylinder body.
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Figure 5. The computation mesh for a hemispheric headform=cylinder
body with a grid resolution of 46× 131.
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Figure 6. Comparisons of pressure distribution and cavity shape with di�erent grid resolutions.
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Assuming �′
1 =�

′
0, formulation (18) can be rewritten as follows after making derivation

calculus on its both sides while r is replaced by �,

��(n) =
�
180

�′

⎡
⎣sign(pV − p(n))

√
|p(n) − pV|
‖p(0) − pV‖ + sign

(
@p(n)

@s

) √
|@p(n)=@s|
‖@p(0)=@s‖

⎤
⎦ (20)

This is the formulation of the newly developed cavity shape updating scheme used in this
work. In the calculations carried out in this paper, we assumed there is no pressure di�erence
between the two sides of cavity interface. So the forebody of the cavity surface is modelled
as a boundary with constant pressure equal to the vapour pressure of �uid. When the surface
tension and viscous e�ects are taken into account, the pressure di�erence between the two
sides of the cavity interface is not zero and the pressure along the cavity surface is not
constant any more. In this case, the parameter pV in the cavity shape updating scheme (20)
changes to a function of pV, surface tension and viscous stress. The surface tension e�ect is
not taken into account in the present model. The presented cavitation model and algorithm is
restricted to the steady �ow.
The presented cavitation updating scheme is applied for the cavitation prediction of a hemi-

spheric headform=cylinder body for K =0:20. A range of relaxation factor values is used to
check their in�uence on the e�ciency of the scheme. The iteration histories of the cav-
ity shape updating procedure are shown in Figure 7, in which Igrid is the time number of
cavity shape updating. We can see that the convergence speed tends to speed up with a larger
value of relaxation factor. However, the reachable convergence precision decreases (value
increases) with the increasing value of relaxation factor. For example, the convergence crite-
ria prescribed in this work (log10Dp=Dp0 =−2:0) can be achieved with 214 iterations of cavity
shape updating for �′=0:2, while only half iteration times is needed for �′=0:5. For �′=2:0,

100 200 300
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

L
o

g

Igrid

10
D

p
/D

p
0

Relaxcoef=0.2
Relaxcoef=0.5
Relaxcoef=1.0
Relaxcoef=2.0

Figure 7. Comparison of iteration history with di�erent relaxation factors.
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only 33 iteration times is needed for this scheme to reach a convergence precision around
log10Dp=Dp0 = − 1:4, which is the limit of convergence precision with this relaxation factor.
Therefore, there has a compromise between the convergence precision and computational
e�ciency when considering the selection of the relaxation factor. A value of �′=0:5 is
chosen to ensure the iteration converge satisfactorily. A local, small but sudden, oscillation
on the curve of iteration history, as marked in the �gure, is due to the transition of the
de�ning method of the wake closure model when the iteration approaches to convergence.
We can see from the �gure that, the iteration seems to speed up after the transition of the
de�ning method of the wake closure model since the pro�le becomes smoother. This veri�es
the e�ectiveness of the developed wake closure model.
It is worthy to be aware that the cavity shape updating scheme, as well as the choice of the

empirical factors in it, plays an important role in determining the e�ciency and e�ectiveness
of the iteration algorithm. But it has no in�uence on the �nal solutions of the cavity shape and
�ow �eld only if both the �ow �eld and the cavity shape updating procedure get satisfactorily
converged.

5.3. Headform=cylinder cavitating �ows tests

The accuracy of this cavitation model and scheme is further veri�ed by performing cavitation
predictions for a series of headform=cylinder bodies. Experimental data is reported by Rouse
and McNown [9]. The experiment is conducted in a water tunnel with cylindrical test objects
0:025m in diameter and 0:2038m in length. The curvature radium of the ogive headform
pro�le is two times of the radium of the after-body cylinder. For sharp edged bodies, the cav-
itation always occurs just downstream of the edge corner. The inception point always retains at
the corner point. Here we present the results of the cavitating �ows past a cone=cylinder body
for K =0:50, 0.40, 0.30. The apex angle of the cone is 45◦. Figure 8 shows the comparison
of the calculated pressure distributions along the wall surface for cavitation free �ows past a
cone=cylinder body with the experimental data of Rouse and McNown [9]. A comparison of
the computation results is made in Figure 9 with available experimental data for K =0:50,
0.40, 0.30. The comparison shows good agreement between the present computation and the
measurement. A local enlargement plot of the cavity shape comparison between the computa-
tion and the experiment is given in Figure 10 for K =0:40. As can be seen from the �gures,
the pressure distribution and cavity shape are both well duplicated with the present model
as compared with the experimental results. Even the pressure recovery in the wake region is
well predicted. Di�erent cavity shapes along the cone=cylinder for three di�erent cavitation
index K =0:50, 0.40, 0.30 are shown in Figure 11. The strong in�uence of cavitation on the
pressure distribution and the �ow pattern is highlighted in Figures 9 and 11.
For sharp-edged body, the inception point is always at the corner. It is more challenging to

predict the inception point of cavitation for a smooth body. To test the model and treatments
in such cases, we performed computations for an Ogival headform=cylinder body for K =0:32,
0:24 and a hemispheric headform=cylinder body for K =0:40, 0.30, 0.20. The curvature radium
of the ogive headform pro�le is two times of the radium of the afterbody cylinder.
Figure 12 gives the pressure coe�cient distribution, cavity thickness distribution for an

ogive=cylinder body for K =0:32, 0:24. The results of a free cavitation computation and the
experimental data were also included for comparison. Figure 13 shows the cavity shape
along the ogive=cylinder body with K =0:32, 0:24. Figures 14 and 15 present the pressure

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 52:639–658



654 L. LIU, J. LI AND Z. FENG

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

S*

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

C
p

0

1

2

3

4

5

6

R
*

Conic Headform
Cavitation free

r

z

S

Calculation
Data (Rouse & McNown)

Figure 8. Pressure distribution for a conic headform=cylinder body without cavitation.
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distribution, cavity thickness distribution and cavity shape for a hemisphere=cylinder body for
K =0:40, 0.30, 0.20, respectively. The results of the free cavitation computation and the ex-
perimental data are included for comparison. Results in these �gures indicate that the location
of inception point is accurately predicted for cavitation on these smooth surfaces. These results
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Figure 11. Cavity shapes on the wall of a conic headform=cylinder body with di�erent cavitation indexes:
(a) K =0:30; (b) K =0:40; and (c) K =0:50.
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Figure 12. Pressure distribution and cavity shape for an ogival headform=cylinder body.
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Figure 13. Cavity shape on the wall of an ogival headform=cylinder body with di�erent cavitation
indexes: (a) K =0:24; and (b) K =0:32.
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Figure 15. Cavity shapes on the wall of a hemispheric headform=cylinder body with di�erent cavitation
indexes: (a) K =0:20; (b) K =0:30; and (c) K =0:40.
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validate the assumed inception criteria and treatments for �ows of this nature. The accuracy
and e�ectiveness of the current cavitation model and algorithms are further demonstrated in
these �gures for a range of cavitation numbers by comparisons with experimental data. The
strong in�uence of cavitation on pressure distribution and cavity shape is again highlighted
in these �gures. Regarding the in�uence of the cavitation number on the location of incep-
tion point, we can conclude from analysing the results for conic, hemispheric and ogival
headform=cylinder bodies that, the in�uence becomes less when the curvature radium of the
local surface of cavitation is smaller. It approaches to non-in�uence when the local surface
becomes an edged corner, in which case the inception point is always �xed at the corner.
The current cavitation model and algorithm are well validated so far. The accuracy of

the current model and treatments is found to be competent to those two-phase �ow models
proposed in the literature.

6. CONCLUSIONS

We reported a newly developed numerical treatment technique for attached cavitation and its
application to some con�gurations. The cavitation model is implemented in a viscous Navier–
Stokes solver. The cavity interface is assumed as a free surface boundary of the computation
domain. Its shape is determined using an iterative procedure to match the cavity surface to
a constant pressure boundary. The pressure distribution, as well as its gradient on the wall,
is taken into account in updating the cavity shape iteratively. This method is validated by
applying it to some typical con�gurations. The results obtained are reasonable and the iterative
procedure of cavity shape updating is quite stable. The computations demonstrate the technique
presented is valid. The lack of surface tension and a restriction to steady �ow in the present
cavitation model and algorithm is to be conducted in later research works.

NOMENCLATURE

Cp pressure coe�cient
C; � coe�cient factors in formula
K cavitation index
p static pressure
pV vapour pressure
r local thickness of a cavity
S∗ distance coordination along the wall surface
u; v; w; ui velocity components
Ũ velocity vector
Z; R cylindrical coordinates

Greek letters

� local inclination angle of a cavity surface
� molecular viscosity
�e� e�ective viscosity
�t turbulent viscosity
� �uid density
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